Benson Example 5.10

Let the primed frame be attached to the wedge. Unprimed frame be the inertial one. If \vec{X} is the trajectory of m lying on the wedge, and \vec{Z} is that of the wedge itself,

$$
\ddot{X}_i = \ddot{Z}_i + \ddot{X}_{i'} \tag{0.0.1}
$$

$$
\ddot{X}_j = \ddot{Z}_j + \ddot{X}_{j'}.\tag{0.0.2}
$$

Forces on wedge: normal force $\vec{N} = N \sin \theta \hat{i} - N \cos \theta \hat{j}$ exerted by mass m on it, plus the (vertical) normal force exerted on it by the ground. However, vertical forces must cancel out because $Z_j = 0$. Horizontal forces:

$$
M\ddot{Z}_i \equiv MA_i = N\sin\theta. \tag{0.0.3}
$$

Forces on mass m: normal force $-\vec{N} = -N \sin \theta \hat{i} + N \cos \theta \hat{j}$ exerted on it by the wedge, weight $-mg\hat{j}.$

$$
m\ddot{X}_i = m(A_i + \ddot{X}_{i'}) = -N\sin\theta\tag{0.0.4}
$$

$$
m\ddot{X}_j = m\ddot{X}_{j'} = N\cos\theta - mg.
$$
\n(0.0.5)

Note that in the primed frame, $X_{i'}$ tan $\theta = X_{j'}$; the mass m is constrained to move on the slope of angle θ . Therefore

$$
\ddot{X}_{i'} \tan \theta = \ddot{X}_{j'}.
$$
\n(0.0.6)

Hence, inserting eq. $(0.0.3)$ into eq. $(0.0.4)$; and equations $(0.0.3)$ and $(0.0.6)$ into eq. $(0.0.5)$:

$$
m(A_i + \ddot{X}_{i'}) = -MA_i \tag{0.0.7}
$$

$$
m\ddot{X}_{i'}\tan\theta = \frac{MA_i}{\sin\theta}\cos\theta - mg.
$$
\n(0.0.8)

The rest is algebra to get rid of $\ddot{X}_{i'}$. First line allows us to solve $\ddot{X}_{i'}$ for A_i .

$$
(m+M)A_i = -m\ddot{X}_{i'}
$$
\n(0.0.9)

$$
\ddot{X}_{i'} = -\frac{m+M}{m} A_i.
$$
\n(0.0.10)

Then, eq. [\(0.0.8\)](#page-0-4) becomes

$$
-(m+M)A_i \frac{\sin \theta}{\cos \theta} = \frac{MA_i}{\sin \theta} \cos \theta - mg \qquad (0.0.11)
$$

$$
mg = A_i \left(\frac{M}{\sin \theta} \cos \theta + (m + M) \frac{\sin \theta}{\cos \theta}\right) \tag{0.0.12}
$$

$$
A_i \left(M \cos^2 \theta + (m + M) \sin^2 \theta \right) = mg \sin \theta \cos \theta \tag{0.0.13}
$$

$$
A_i \left(M + m \sin^2 \theta \right) = mg \sin \theta \cos \theta \tag{0.0.14}
$$

$$
A = mg\sin\theta\cos\theta\tag{0.0.15}
$$

$$
A_i = \frac{mg \sin \theta \cos \theta}{M + m \sin^2 \theta}.
$$
\n(0.0.15)

Remember: $\cos^2 \theta + \sin^2 \theta = 1$ is simply the Pythagorean theorem.