Benson Example 5.9

Setup: masses m_1 and m_2 lie on the slope of the wedge, which makes an angle θ with respect to the horizontal. They are joined by a rope. The second mass m_2 , which is higher than m_2 , is in turn joined by a rope to m_3 , which hangs off vertically the side of the wedge.

Erect the unit vectors \hat{i}' and \hat{j}' on the slope of the wedge – the \hat{i}' points upwards along it; whereas \hat{j}' is perpendicular to the former, but also pointing upward. The first mass has tension $T_1\hat{i}'$, weight $-m_1g\sin\theta\hat{i}' - m_1g\cos\theta\hat{j}'$, and normal force $m_1g\cos\theta\hat{j}'$ acting upon it.

$$m_1 a = T_1 - m_1 g \sin \theta \tag{0.0.1}$$

The second mass has tension $-T_1\hat{i}'$, tension $T_2\hat{i}'$, weight $-m_2g\sin\theta\hat{i}' - m_2g\cos\theta\hat{j}'$, and normal force $m_2g\cos\theta\hat{j}'$ acting upon it.

$$m_2 a = T_2 - T_1 - m_2 g \sin \theta \tag{0.0.2}$$

Finally, we need to erect \hat{j} pointing vertically upwards; and \hat{i} perpendicular to it. Then the third mass has weight $-m_3 \hat{g_j}$ and tension $T_2 \hat{j}$ acting on it.

$$-m_3a = T_2 - m_3g. \tag{0.0.3}$$

Two remarks. We have assumed a common acceleration for all $m_{1,2,3}$; otherwise, the ropes will either break or go slack. For positive a, and say zero initial velocity, the masses $m_{1,2}$ are going to move up the slope; and m_3 will move downwards – hence, the – sign in front of m_3a .

We now add the m_1 and m_2 equations; and subtract the m_3 equation.

$$(m_1 + m_2 + m_3)a = -(m_1 + m_2)g\sin\theta + m_3g \tag{0.0.4}$$

$$a = \frac{m_3 - (m_1 + m_2)\sin\theta}{m_1 + m_2 + m_3}g.$$
 (0.0.5)