
General Physics A: Final

1 Kepler’s Laws of Planetary Motion

Gravitational Binary System The key goal of this problem is to derive Kepler’s laws of
planetary motion using the conservation laws we have learned this semester.

Consider two bodies located at x⃗1 and x⃗2, with massesm1 andm2 respectively. Let us assume
they interact solely through the force of gravity, without any external forces. Newton’s second
law now reads

m1
d2x⃗1

dt2
= −GNm1m2

|x⃗1 − x⃗2|2
x⃗1 − x⃗2

|x⃗1 − x⃗2|
, (1.0.1)

m2
d2x⃗2

dt2
= +

GNm1m2

|x⃗1 − x⃗2|2
x⃗1 − x⃗2

|x⃗1 − x⃗2|
. (1.0.2)

Galilean Transformation To begin, explain why Newton’s laws in equations (1.0.1) and
(1.0.2) take the same form if we switch from the inertial frame {x⃗1, x⃗2} to another inertial frame
{x⃗′

1, x⃗
′
2} related by

x⃗ = x⃗′ + v⃗0(t− t0); (1.0.3)

where v⃗0 and t0 are constants-in-time. The v⃗0 · t0 may be viewed as a constant displacement
of the coordinate system; whereas v⃗0t relates two inertial frames that are moving at a constant
velocity v⃗0 with respect to each other.

Center-of-Mass Frame Let X⃗COM be the location of the center-of-mass of the above
binary system; and let

∆⃗ = x⃗1 − x⃗2. (1.0.4)

Show that
¨⃗
XCOM = 0, (1.0.5)

¨⃗
∆ = −GNM

|∆⃗|2
∆⃗

|∆⃗|
; (1.0.6)

where M = m1 +m2 is the total mass; and each overdot denotes a time derivative.
Energy and Angular Momentum Conservation Explain why the following are

constants-in-time:

E ≡ 1

2
˙⃗
∆2 − GNM

|∆⃗|
, (1.0.7)

L⃗ ≡ 1

2
∆⃗× ˙⃗

∆. (1.0.8)
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Kepler’s 2nd Law Explain why the conservation of eq. (1.0.8) implies the motion described

by ∆⃗ must always lie on a fixed 2-dimensional (2D) plane. Next, explain why |L⃗| ≡ Ȧ is in fact

the area swept out by the ∆⃗−motion per unit time. This is Kepler’s 2nd law.
Polar Coordinates Since the binary system must move on a fixed plane, we may now

use polar coordinates:

∆⃗ = (r cosϕ, r sinϕ, 0). (1.0.9)

Show that eq. (1.0.8) is equivalent to

ϕ̇ =
2Ȧ

r2
; (1.0.10)

and eq. (1.0.7) becomes

E =
2Ȧ2r′2

r4
− GNM

r
+

2Ȧ2

r2
. (1.0.11)

Here, we have re-expressed r in terms of ϕ and have denoted

r′(ϕ) ≡ dr/dϕ. (1.0.12)

Kepler’s 1st Law Now, an ellipse (x, y) on the 2D plane obeys

x2

a2
+

y2

a2(1− e2)
= 1, (1.0.13)

for some semi-major axis a > 0 and eccentricity e subject to the constraint 0 ≤ e < 1. On the
other hand, a hyperbola (x, y) on the 2D obeys

x2

a2
− y2

a2(e2 − 1)
= 1, (1.0.14)

but the eccentricity e is now subject to the constraint e > 1. It turns out that both equations
(1.0.13) and (1.0.14) may be parametrized by

(x, y) = (ae, 0) + r(ϕ)(cosϕ, sinϕ), (1.0.15)

where (ae, 0) is the focus of the ellipse or hyperbola and

r(ϕ) =
a(1− e2)

1 + e cosϕ
. (1.0.16)

(You do not need to derive this result.) Insert eq. (1.0.16) into eq. (1.0.11) and solve for a so
that E is indeed a constant. With your solution for a, further demonstrate that

E = −1− e2

8

(
GNM

Ȧ

)2

. (1.0.17)

Is E positive or negative for elliptical orbits? What about for hyperbolic orbits?
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Notice you did not have to solve Newton’s 2nd law in eq. (1.0.6)! But you have now shown
that r(ϕ) in fact describes either an ellipse or a hyperbola, provided a yields a constant E.1 This
is the (generalized) Kepler’s 1st law.

Kepler’s 3rd Law Finally, use the total area of the ellipse

A = πa2
√
1− e2 (1.0.18)

to deduce Kepler’s 3rd law. For elliptical orbits, and with T denoting a period, show that

T 2 =
4π2a3

GNM
. (1.0.19)

1You are given the form of the solution in eq. (1.0.16); extra credit if you can derive it by integrating eq.
(1.0.11) directly.
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