
Linear and Angular Momentum
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1 Linear Momentum

1.1 Definition and Conservation

A body of mass m and velocity v⃗ ≡ dx⃗/dt (with x⃗ being its displacement vector) is defined to
have linear momentum

p⃗ ≡ mv⃗. (1.1.1)

Newton’s second law now reads

dp⃗

dt
= F⃗ . (1.1.2)

Kinetic energy is

1

2
mv⃗2 =

1

2
m

(
p⃗

m

)2

=
p⃗2

2m
. (1.1.3)

If U denotes the potential energy, total mechanical energy is

E =
p⃗2

2m
+ U. (1.1.4)

Conservation of linear momentum Whether or not mechanical energy is conserved,
linear momentum of an isolated system is always conserved as long as Newton’s 2nd and 3rd
laws hold. This is the key reason for defining linear momentum in the first place.
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Let us see why. Consider the time derivative of the total linear momentum of N bodies

d

dt

N∑
i=1

p⃗i =
N∑
i=1

F⃗i, (1.1.5)

where F⃗i is the total force asserted on the i-th body. But since we are assuming these N bodies
are isolated, this force must be due to the rest of the N − 1 bodies:

F⃗i =
N∑
j ̸=i

(
F⃗ on i-th body due to j-th body

)
. (1.1.6)

By Newton’s 3rd law, we have

F⃗ on i-th body due to j-th body = −
(
F⃗ on j-th body due to i-th body

)
, (1.1.7)

for i ̸= j. If we further define

F⃗ on i-th body due to j-th body ≡ F⃗i,j; (1.1.8)

then

F⃗i,j = −F⃗j,i, (1.1.9)

F⃗i =
N∑
j ̸=i

F⃗i,j. (1.1.10)

At this point, we return to the total time derivative:

d

dt

N∑
i=1

p⃗i =
∑

1≤i,j≤N
i ̸=j

F⃗i,j. (1.1.11)

We are summing over all pairs (i, j) for i ̸= j. Moreover, for a fixed pair (i, j), we may identify

a corresponding pair (j, i). But since Fi,j = −F⃗j,i these internal forces would cancel in pairs by
Newton’s 3rd law, resulting in zero net force. This means

d

dt

N∑
i=1

p⃗i = 0 (1.1.12)

and

N∑
i=1

p⃗i = constant in time. (1.1.13)
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1.2 Center of Mass

A closely related concept is that of the center-of-mass. It is the position X⃗COM within a system
that amounts to a ‘weighted average’ of the positions of the system’s individual components.
Specifically, for a system of N bodies

X⃗COM ≡
∑

1≤i≤N mix⃗i∑N
j=1mj

. (1.2.1)

Let us observe that the total linear momentum is simply the total mass times dX⃗COM/dt:

P⃗COM =

(
N∑
j=1

mj

)
dX⃗COM

dt
≡

(
N∑
j=1

mj

)
v⃗COM (1.2.2)

=
∑

1≤i≤N

mi
dx⃗i

dt
=
∑

1≤i≤N

p⃗i. (1.2.3)

That means for an isolated system – where there are no external forces – the center-of-mass
must move at a constant velocity:

d2X⃗COM

dt2
=

(
N∑
j=1

mj

)−1

d

dt

∑
1≤i≤N

p⃗i = 0. (1.2.4)

At this point, let us define the Galilean transformation

z⃗i ≡ x⃗i − v⃗COM · t, (1.2.5)

v⃗COM ≡ dX⃗COM

dt
; (1.2.6)

and the momenta

q⃗i ≡ mi
˙⃗zi ≡ p⃗i −miv⃗COM. (1.2.7)

The total linear momentum in the new z⃗−frame is zero:

Q⃗ ≡
∑
i

q⃗i =
∑
i

p⃗i −

(∑
i

mi

)
v⃗COM = 0⃗. (1.2.8)

We have arrived at the key fact:

By performing a Galilean transformation to switch into a center-of-mass inertial
frame, the total linear momentum of an isolated system can always be set to zero.

Composite Bodies Suppose we have various extended bodies whose COMs we have already
computed; and we place these bodies together to form a larger system – what is the COM of this
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larger system? Let x⃗A,i and mA,i be respectively the position and mass of the ith constituent of
the Ath body, so that the COM of this Ath body is

X⃗COM,A =

∑
i mA,i

MA

, (1.2.9)

MA ≡
∑
j

mA,j. (1.2.10)

On the other hand, the COM of the entire system involves a sum over both i and A because we
now need to include every constituent:

X⃗COM =

∑
i,A mA,ix⃗A,i∑

j,B mB,j

=

∑
i,A mA,ix⃗A,i∑

B MB

. (1.2.11)

However, for a fixed A, we may multiply and divide by the total mass of the Ath body MA:

X⃗COM =
∑
A

(
MA∑
B MB

∑
i mA,ix⃗A,i

MA

)
(1.2.12)

=

∑
A MAX⃗COM,A∑

B MB

. (1.2.13)

We infer:

The COM of a system comprised of N ≥ 2 bodies can be computed by treating these
N bodies as point masses centered at their individual COMs.

1.3 Kinetic Energy

For an arbitrary system let the displacement vector of the i-th body be decomposed into X⃗COM

plus the displacement X⃗i from the COM to it; i.e.,

x⃗i ≡ X⃗COM + X⃗i. (1.3.1)

Note that, by the very definition of COM, we have

X⃗COM =

∑
imix⃗i

Mtotal

=

∑
i mi(X⃗COM + X⃗i)

Mtotal

= X⃗COM +

∑
i miX⃗i

Mtotal

. (1.3.2)

This implies ∑
i

miX⃗i = 0⃗. (1.3.3)

Then, the total KE is∑
i

mi

2

(
v⃗2COM +

˙⃗
X2

i + 2v⃗COM · ˙⃗
Xi

)
(1.3.4)

=
Mtotal

2
v⃗2COM +

∑
i

mi

2
˙⃗
X2

i +Mtotalv⃗COM · d

dt

∑
imiX⃗i

Mtotal

(1.3.5)

=
Mtotal

2
v⃗2COM +

∑
i

mi

2
˙⃗
X2

i (1.3.6)

= KECOM +KE relative to COM. (1.3.7)
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1.4 Collisions

One application of the conservation of linear momentum is to that of collisions of N bodies. Let
us denote the momentum of the incoming bodies to be {p⃗1, . . . , p⃗N} and those of the outgoing
bodies to be {p⃗′1, . . . , p⃗′N} Then, conservation of linear momentum says

N∑
i=1

p⃗i =
N∑
i=1

p⃗′i. (1.4.1)

If we are operating in the center-of-mass frame,

N∑
i=1

q⃗i = 0⃗ =
N∑
i=1

q⃗′i. (1.4.2)

If total mechanical energy is conserved,

N∑
i=1

(
p⃗2i
2mi

+ Ui

)
=

N∑
i=1

(
p⃗′2i
2mi

+ U ′
i

)
, (1.4.3)

where the primes on the right hand side simply denotes ‘outgoing’.
2 Body Collision: Elastic Case For the 2−body problem, and in the center-of-mass

frame, we must be q⃗1 = −q⃗2 and q⃗′1 = −q⃗′2. Let us place the z−axis along the incoming
momentum:

q⃗1 = (0, 0, q), (1.4.4)

q⃗2 = (0, 0,−q); (1.4.5)

and the outgoing momentum must read

q⃗′1 = q′(sin θ cosϕ, sin θ sinϕ, cos θ), (1.4.6)

q⃗′2 = −q′(sin θ cosϕ, sin θ sinϕ, cos θ). (1.4.7)

Suppose we may neglect the potential energies before and after the collisions. Then, if total
mechanical energy is conserved,

q2
(

1

2m1

+
1

2m2

)
= q′2

(
1

2m1

+
1

2m2

)
. (1.4.8)

In other words, the magnitudes of the momentum also needs to be conserved if mechanical
energy is conserved:

q = q′. (1.4.9)

There are no further constraints on the outgoing angles (θ, ϕ) unless we have further details
regarding how the two bodies interacted. In quantum mechanics even if the detailed interactions
were specified, the best one can do is to calculate the probability (density) that a given outgoing
direction (θ, ϕ) would occur.
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Head-On For the head-on collision, we have

m1v1 +m2v2 = m1v
′
1 +m2v

′
2 (1.4.10)

m1(v1 − v′1) = m2(v
′
2 − v2). (1.4.11)

(Twice of) Energy conservation says

m1v
2
1 +m2v

2
2 = m1v

′2
1 +m2v

′2
2 , (1.4.12)

m1(v1 − v′1)(v1 + v′1) = m2(v
′
2 − v2)(v

′
2 + v2). (1.4.13)

Recalling the momentum conservation equations,

v1 − v2 = v′2 − v′1. (1.4.14)

We may express [
m1 m2

1 −1

] [
v1
v2

]
=

[
m1 m2

−1 1

] [
v′1
v′2

]
. (1.4.15)

The inverse of a 2× 2 matrix is given by[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
. (1.4.16)

That means the outgoing velocities may be expressed in terms of the incoming ones:[
v′1
v′2

]
= (m1 +m2)

−1

[
1 −m2

1 m1

] [
m1 m2

1 −1

] [
v1
v2

]
(1.4.17)

= (m1 +m2)
−1

[
m1 −m2 2m2

2m1 m2 −m1

] [
v1
v2

]
. (1.4.18)

If, for instance, m2 were initially at rest, v2 = 0 and[
v′1
v′2

]
= v1(m1 +m2)

−1

[
m1 −m2

2m1

]
. (1.4.19)

If m1/m2 → 0, namely if m1 is much lighter than the target initially at rest,[
v′1
v′2

]
≈ v1

[
−1
0

]
. (1.4.20)

On the other hand, if m2/m1 → 0, the target is much lighter than the incident mass,[
v′1
v′2

]
= v1

[
1
2

]
. (1.4.21)

2 Body Collision: Inelastic Case If mechanical energy (really kinetic) is not conserved,
then we can still work in the center of mass frame but q ̸= q′. Suppose we consider the perfectly
inelastic case where the two bodies stick together after the collision – the resulting mass of
m1 +m2 is then described by a single momentum q⃗′ – we must have

q⃗′ = 0. (1.4.22)

This in turn means the final kinetic energy is zero in the center of mass frame; i.e., the initial
kinetic energy (q2/2)(m−1

1 +m−1
2 ) is completely lost.
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1.5 External Forces

If there is an external force F⃗i,ext on the i-th body in the system, then running the argument
through once again will tell us the time derivative of the total momentum would now involve
the sum of internal and external forces. However, the internal forces still cancel, by Newton’s
third law. Hence, what remains is the total external force.

Mtotal
d2X⃗COM

dt2
=

d

dt

∑
i

p⃗i =
∑
i

F⃗i,ext ≡ F⃗total, (1.5.1)

Mtotal ≡
∑
i

mi. (1.5.2)

2 Angular Momentum

The notion of angular momentum is particularly important when solving problems involving
rotation. For a mass m with displacement x⃗ and momentum p⃗, its angular momentum is defined
as

L⃗ ≡ x⃗× p⃗ = mx⃗× ˙⃗x. (2.0.1)

Notice this definition depends on the choice of origin. That is, under a shift

x⃗ → x⃗+ x⃗0, (2.0.2)

we have

L⃗ → L⃗+ x⃗0 × p⃗. (2.0.3)

Now suppose our system comprises of N bodies. We may now consider the time derivative of
its total angular momentum

d

dt

N∑
i=1

(x⃗i × p⃗i) =
N∑
i=1

(
p⃗i
m

× p⃗i

)
+

N∑
i=1

(x⃗i × F⃗i) (2.0.4)

=
N∑
i=1

(x⃗i × F⃗i). (2.0.5)

We may define torque as

τ⃗ ≡ x⃗× F⃗ (2.0.6)

– which, like angular momentum, depends on the choice of the origin – and therefore summarize:

The time derivative of the total angular momentum is equal to the total torque.

This is the analog of: the time derivative of the total linear momentum is equal to the total
force.

Conservation of angular momentum We may also immediately deduce:
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The angular momentum of a system is conserved whenever the total torque ap-
plied is zero.

Radial forces A special case worth highlighting is that of a radial force. A body of mass
m subject to a radial force F⃗ = −V ′(r)r̂ experiences zero torque as computed about the origin
because

τ⃗ = x⃗× F⃗ (2.0.7)

= −rV ′(r)r̂ × r̂ = 0. (2.0.8)

In other words, sometimes the total force is non-zero but the total torque is zero. Obviously, if
the total force is zero, there is no torque to speak of.

Kinetic energy of rigid rotating body By rigid body we mean that the distance
between any pair of points within the body must remain the same at all times. What this means
is that internal forces are strong enough to hold the body together, preserving its shape, size,
etc. Let us choose to choose the coordinate system such that the ith constituent is located at

x⃗i = X⃗COM + X⃗i. (2.0.9)

Let us suppose the body is rotating along the k̂ axis, which we shall assume is passing through
the COM, and let us parametrize

X⃗i = rir̂i + zik̂. (2.0.10)

We must have zi remaining constant, since we are assuming the body is rotating about the k̂ axis.
But rigid body means |X⃗i| =

√
z2i + r2i is constant; and therefore ri is constant too. Recalling

˙̂r = θ̇θ̂,

˙⃗
Xi = ωriθ̂i, (2.0.11)

ω ≡ θ̇. (2.0.12)

Because this is a rigid body, ω is common to each and every ith constituent; i.e., every piece of
the body rotates at the same rate – otherwise the body would begin to deform. The total KE,
according to eq. (1.3.6), now becomes

Total KE =
Mtotal

2
v⃗2COM +

1

2
ICOMω

2, (2.0.13)

ICOM ≡
∑
i

mir
2
i ; (2.0.14)

where ICOM is known as the moment of inertia, here computed about the COM.
Angular Velocity For fixed axis rotation, we should really denote angular velocity as

a vector:

ω⃗ =
dθ

dt
k̂ = ωk̂, (2.0.15)
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where k̂ is the axis of rotation. We may also discover that

ω̂ × X⃗i = ωk̂ ×
(
rir̂i + zik̂

)
= ωriθ̂i =

dX⃗i

dt
. (2.0.16)

Additionally,

ω⃗ ×
(
ω⃗ × X⃗i

)
= ω2rik̂ × θ̂i = −ω2rir̂i. (2.0.17)

Denoting the second time derivative of the angle as

d2θ

dt2
=

dω

dt
≡ α, (2.0.18)

we may also see that

α⃗ ≡ αk̂, (2.0.19)

α⃗× X⃗i = αriθ̂i. (2.0.20)

Employing
˙̂
θ = −ωr̂, we see the acceleration of the displacement from the COM is

¨⃗
Xi = αriθ̂i − ω2rir̂i (2.0.21)

= α⃗× X⃗i + ω⃗ ×
(
ω⃗ × X⃗i

)
. (2.0.22)

Parallel Axis Theorem Suppose, instead of computing I about an axis passing through
the COM, we compute it about an axis parallel to it – namely, choose X⃗0 such that

X⃗0 = X⃗COM + r0n̂, (2.0.23)

where the unit vector n̂ is perpendicular to the rotation axis. If we decompose

X⃗COM = X⃗⊥
COM + zCOMk̂, (2.0.24)

X⃗0 = X⃗⊥
0 + z0k̂, (2.0.25)

where X⃗⊥
COM and X⃗⊥

0 lie on the plane perpendicular to the rotation axis k̂, we may deduce

r′2i ≡ (X⃗⊥
0 − rir̂i)

2 = (X⃗⊥
COM + r0n̂− rir̂i)

2 (2.0.26)

= (X⃗⊥
COM − rir̂i)

2 + r20 + 2r0n̂ · (X⃗⊥
COM − rir̂i). (2.0.27)

The momentum of inertia computed about an axis parallel to the one passing through the COM
at a distance r0 away, is

I =
∑
i

mir
′2
i =

∑
i

mir
2
i +Mtotalr

2
0 + 2r0n̂

∑
i

mi(X⃗
⊥
COM − rir̂i) (2.0.28)

= ICOM +Mtotalr
2
0. (2.0.29)
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Newton’s Laws for rigid body We may compute the total angular momentum.

L⃗total =
∑
i

mi(X⃗COM + X⃗i)× (
˙⃗
XCOM +

˙⃗
Xi) (2.0.30)

=
∑
i

mi

(
X⃗COM × ˙⃗

XCOM + X⃗COM × ˙⃗
Xi + X⃗i ×

˙⃗
XCOM + X⃗i ×

˙⃗
Xi

)
. (2.0.31)

We proved earlier that, if X⃗i is the displacement from the COM, then
∑

i miX⃗i = 0⃗. Therefore∑
i mi

˙⃗
Xi = 0⃗ too.

L⃗total = MtotalX⃗COM × ˙⃗
XCOM +

∑
i

miX⃗i ×
˙⃗
Xi (2.0.32)

The first term can be thought of as the angular momentum of a point mass with the total mass
of the system located at its COM. Again, if the body is rotating along the k̂ axis,∑

i

miX⃗i ×
˙⃗
Xi = ω

∑
i

miri(rir̂i + zik̂)× θ̂i (2.0.33)

= ωICOMk̂ − ω
∑
i

mirizir̂i. (2.0.34)

If we assume the sum of the mirir̂i is zero for a fixed z−slice (i.e., for all zi taking the same
value) then

L⃗total = ICOMω⃗. (2.0.35)

We have already derived, the time derivative of the angular momentum is equal to the total
torque τ⃗ = τ k̂:

ICOMα⃗ = τ⃗ , (2.0.36)

where α⃗ = αk̂ ≡ ω̇k̂ = θ̈k̂. Note that many assumptions were made – i.e., this result holds
because we have assumed a rigid body undergoing fixed axis rotations.

Work-Energy Theorem for rigid bodies If we assume the rigid body is constrained
to rotate along the k̂ axis, then if we decompose all vectors as

x⃗i = X⃗COM + X⃗i, (2.0.37)

where ri and Zi are constant in time; we have

dW =
∑
i

F⃗i · dX⃗COM +
∑
i

F⃗i · dX⃗i. (2.0.38)

The first term on the right hand side is simply the total force dotted into dX⃗COM; this means
it is simply the total work done on the mass Mtotal located at the COM. For the second term,
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we may use Newton’s 2nd law F⃗i = mi
¨⃗
Xi and dX⃗i =

˙⃗
Xidt. Utilizing equations (2.0.16) and

(2.0.21),

dW = F⃗total · dX⃗COM +
∑
i

mi

(
α⃗× X⃗i + ω⃗ ×

(
ω⃗ × X⃗i

))
· (ω⃗ × X⃗i)dt. (2.0.39)

Now, ω⃗ × (ω⃗ × X⃗i) must be perpendicular to ω⃗ × X⃗i; i.e., the rightmost term is zero. We may
consider

(ω⃗ × X⃗i) ·
d

dt
(ω⃗ × X⃗i) = (ω⃗ × X⃗i) ·

(
(α⃗× X⃗i) + ω⃗ × (ω⃗ × X⃗i)

)
(2.0.40)

= (ω⃗ × X⃗i) · (α⃗× X⃗i). (2.0.41)

Also remember,

(ω⃗ × X⃗i)
2 = ωriθ̂i. (2.0.42)

At this point, we have

dW = F⃗total · dX⃗COM +
∑
i

mi

2

d

dt

(
ω⃗ × X⃗i

)2
dt (2.0.43)

= Mtotal
d2X⃗COM

dt2
· dX⃗COM

dt
dt+ dt

d

dt

∑
i

ω2mir
2
i

2
(2.0.44)

= dt
d

dt

Mtotal

2

(
dX⃗COM

dt

)2

+
ICOMω

2

2

 . (2.0.45)

Total work done may now be deduced to be

W = ∆

Mtotal

2

(
dX⃗COM

dt

)2

+
ICOMω

2

2

 = ∆KE. (2.0.46)

Moreover, since τ⃗ = ICOMαk̂, we may also express

dt
d

dt

ICOMω
2

2
= dt

dθ

dt
ICOMα = dθτ ; (2.0.47)

and therefore ∫ θfinal

θinitial

τdθ = ∆

(
ICOMω

2

2

)
. (2.0.48)
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