
Work and Energy

Work Let F⃗ denote some force acting on a body of mass m. The work W done by F⃗
as m moves from point A to point B along some path P is defined as

W ≡
∫ B

A

F⃗ (x⃗) · dx⃗ =

∫ B

A

F⃗ · dx⃗
dt

dt. (0.0.1)

Power At a given time t, we may express the integral as

W (t) =

∫ t

tA

F⃗ (x⃗(t′)) · dx⃗
dt′

dt′, (0.0.2)

where we are now viewing the trajectory as a function of time, described by x⃗(tA ≤ t′ ≤ t).
Differentiating both sides with respect to time, and recognizing differentiation as the inverse
operation of integration,

P (t) ≡ dW (t)

dt
= F⃗ (x⃗(t)) · dx⃗

dt
. (0.0.3)

We define power P (t) to be the time derivative of work done.
Work-Energy Theorem We now prove

The total work done on a mass m is equal to the change in its kinetic energy
(1/2)mv⃗2 = (m/2) ˙⃗x · ˙⃗x.

Provided Newton’s law F⃗ = md2x⃗/dt2 holds, and denoting d2x⃗/dt2 ≡ ¨⃗x and dx⃗/dt ≡ ˙⃗x,

Wtotal =

∫ B

A

F⃗total(x⃗) · dx⃗ (0.0.4)

= m

∫ B

A

¨⃗x · ˙⃗xdt =
∫ B

A

d

dt

(m
2
˙⃗x · ˙⃗x

)
dt (0.0.5)

=
m

2
v⃗2(B)− m

2
v⃗2(A) ≡ ∆KE. (0.0.6)

Conservative vs non-conservative forces A conservative force F⃗ is one where it can
be written as the negative gradient of a potential energy U(x⃗),

F⃗ = −∇⃗U. (0.0.7)

1



In Cartesian coordinates (x, y, z),

Fx = −∂xU, Fy = −∂yU, Fz = −∂zU. (0.0.8)

Note that U is only defined up to a space-independent constant, since any such term would
be eliminated by the derivative operation to return the same force F⃗ ; namely, F⃗ = −∇⃗(U +

constant) = −∇⃗U .
A non-conservative force is simply one that cannot be written as a negative gradient of a

potential energy – friction is a key example. The key property of conservative forces is that the
work done by them is independent of the path taken:

W =

∫ B

A

(−∇⃗U(x⃗)) · dx⃗ (0.0.9)

= −
∫ B

A

(∂xUdx+ ∂yUdy + ∂zUdz) (0.0.10)

= −
∫ B

A

dU = U(A)− U(B) (0.0.11)

– the work done by a conservative force is equal to the difference between the potential energies
at the end points. In fact, the logic goes in reverse too: if the work done by a force F⃗ is always
path independent, then it can be expressed as a negative gradient of a potential energy.

Suppose {F⃗1,NC, F⃗2,NC, . . . } are non-conservative forces and {F⃗1,C = −∇⃗U1, F⃗2,C = −∇⃗U2, . . . }
are conservative ones, then the total work done is

∑
i

Wi,NC +
∑
i

∫ B

A

F⃗i,C · dx⃗ =
mv⃗2(B)

2
− mv⃗2(A)

2
(0.0.12)

∑
i

Wi,NC +
∑
i

(Ui(A)− Ui(B)) =
mv⃗2(B)

2
− mv⃗2(A)

2
. (0.0.13)

If we define total mechanical energy as

E ≡ mv⃗2

2
+
∑
i

Ui, (0.0.14)

this relation can be summarized as:∑
i

Wi,NC = E(B)− E(A) (0.0.15)

– the total work done by the non-conservative forces acting on m is equal to the change in total
mechanical energy arising from kinetic energy plus the conservative-forces’ potential energies.
In particular, if only conservative forces are present, total mechanical energy is conserved:

E(A) = E(B) = constant. (0.0.16)
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Gravity Near Earth’s Surface Set up a coordinate system such that ĵ is the unit vector
perpendicular to and pointing away from the surface of the Earth; then the force of gravity on
a mass m is

−mgĵ = −∂y(mgy)ĵ, (0.0.17)

where the coordinate in the vertical direction. The gravitational potential is therefore

U = mgy + constant. (0.0.18)

Gravity: General Case In general, the force of gravity of mass (point) mass M upon
another (point) mass m is

−GNMm

r2
r̂, (0.0.19)

where r̂ is the unit vector that points away from M . If we erect a Cartesian coordinate system
centered at M ,

r =
√

x2 + y2 + z2, (0.0.20)

−(∂x, ∂y, ∂z)r
−1 = −(∂x, ∂y, ∂z)(x

2 + y2 + z2)−1/2 (0.0.21)

=
1

2
(x2 + y2 + z2)−3/2(2x, 2y, 2z) (0.0.22)

=
(x, y, z)

r3
= x⃗/r3 = r̂/r2. (0.0.23)

Therefore, the force of gravity by M on m can now be recognized as

−GNMm

r2
r̂ = −∇⃗

(
−GNMm

r

)
, (0.0.24)

and therefore the potential energy is

U = −GNMm

r
+ constant. (0.0.25)

Spring In one dimension, if x is the coordinate displacement measured from the location
where the spring is neither stretched nor compressed and î is the associated unit vector, the
spring force is

F⃗ = −kx̂i = −∂x

(
1

2
kx2

)
î; (0.0.26)

the interpretation here is that it pushes when the spring is compressed (x < 0); whereas it pulls
when the spring is stretched (x > 0). The potential energy is therefore

U =
1

2
kx2 + constant. (0.0.27)

Friction Friction is a phenomenological macroscopic force law that arises from the micro-
scopic interactions between two rough surfaces. Its key property is that it opposes the motion;
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i.e., opposite in direction to the velocity at a given instant. One form of friction is −fv⃗, where
f > 0 and v⃗ = dx⃗/dt is the velocity of the body in question. Note that the work done by such
a force is

Wf = −f

∫ B

A

v⃗ · dx⃗ = −f

∫ B

A

v⃗2dt ≤ 0. (0.0.28)

Since this integral involves v⃗2, a strictly non-negative quantity, this means it can be zero only
when v⃗ is zero along the entire path–an impossibility. In turn, the work done by friction when
the body returns to the same point (i.e., A = B) cannot be zero. Now, if it were possible to write
the friction force as a negative gradient of a potential – i.e., if friction were actually conservative
– we have seen that work done for A → A would be zero because we would be taking the
difference of the potential energy at the same point. Hence, friction cannot be conservative.
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