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1 Galilean Relativity

The core tenet of relativity is that physical laws must be indistinguishable – the fundamental
equations of physics must take the same form – when we switch from one inertial frame to
another. The difference between Galilean Relativity underlying Newton’s laws of motion and
Einstein’s Special Relativity is the very different notions of an inertial frame. Let us begin with
the former, since it is likely already familiar.

Newton’s 1st law of motion is really a definition of an inertial frame: if there are no forces
acting on an arbitrary system and if all such force-free systems travel at constant velocities, then
the frame in which these observations are made is an inertial one.

Newton’s 2nd law In such an inertial frame, using Cartesian coordinates x⃗ to describe
the location os some mass m, its acceleration is governed by Newton’s second law:

m
d2x⃗

dt2
≡ m¨⃗x = F⃗total, (1.0.1)

where F⃗total denotes the total force acting on it. Note, however, that Newton’s 2nd law does not
tell you what the forces {F⃗} are; they are to be determined by empirical observation of the real
world.

Flat Space In writing eq. (1.0.1) using Cartesian coordinates, there is an implicit
assumption that Newton’s laws of motion applies in flat space, whose precise definition I shall
delay for a while. Roughly speaking flat space is where the rules of Euclidean geometry holds:
parallel lines do not cross, sum of internal angles of a triangle equals π, the Pythagorean theorem
holds, etc. For example, the surface of a perfectly spherical ball is not a flat space; parallel lines
can meet, and sum of the internal angles of a triangle is not necessarily π. Being in flat space
means, we may extend a straight line from mass m1 at x⃗1 and mass m2 at x⃗2, and denote the
resulting vector as

∆⃗1→2 ≡ x⃗2 − x⃗1. (1.0.2)

In particular, if both masses experience no external forces, ¨⃗x1,2 = 0, we must also have

¨⃗
∆1→2 = 0, (1.0.3)

whose solution tells us the relative displacement between them must amount to constant velocity
motion:

x⃗2(t)− x⃗1(t) = ∆⃗1→2 = ∆⃗0 + V⃗ · t, (1.0.4)

for time (t−)independent ‘initial displacement’ ∆⃗0 and ‘initial velocity’ V⃗ .

Problem 1.1. Force-Free Parallel Lines on 2-Sphere Consider two masses m1 and
m2 located on the unit 2−sphere, with trajectories y⃗1(t) and y⃗2(t). We shall let their initial
velocities at t = 0 be perpendicular to the equator at θ = π/2. This means they are initially
parallel. Below, we shall verify that the following trajectories are indeed force-free:

yi1,2 =
(π
2
− v0t, ϕ1,2

)
, (1.0.5)
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where ϕ1,2 are the constant azimuthal angles of the masses’ motion.

Verify that the velocities of m1,2 are both −v0θ̂. What time t do they meet at the North
Pole? For ∆ϕ ≡ ϕ2 − ϕ1 small enough – namely, the trajectories are nearby enough – so that
the local region of space containing the two masses at a given time t can be considered nearly
flat space, show that the displacement vector joining m1 to m2 is

∆⃗1→2 = cos(v0t)∆ϕ · ϕ̂. (1.0.6)

This problem illustrates the difference between force-free motion on a curved space versus that in
flat space: not only can initially parallel trajectories eventually meet, their relative displacements
are not acceleration free – unlike their counterparts in flat space in equations (1.0.3) and (1.0.4).

Recall that, if X⃗ is the relative displacement from point A to B, the Pythagorean theorem
informs us that the square of the distance between them is X⃗2 ≡ X⃗ · X⃗, where the · is the the
ordinary dot product. In an infinitesimal region of space, the infinitesimal distance dℓ between
x⃗ and x⃗+ dx⃗ is therefore

dℓ2 = dx⃗ · dx⃗. (1.0.7)

A word on notation: instead of labeling the Cartesian components {x, y, z}, we shall instead call
them {x1, x2, x3}. Here, {xi|i = 1, 2, 3} does not mean x raised to the ith power; but rather the
ith component of the Cartesian coordinate vector x⃗. The Pythagorean theorem reads, in 3D
space,

dℓ2 = (dx1)2 + (dx2)2 + (dx3)2. (1.0.8)

This is also a good place to introduce Einstein summation notation. First, we define the Kro-
necker delta,

δij = 1 if i = j (1.0.9)

= 0 if i ̸= j. (1.0.10)

Notice, this is simply the identity matrix in index notation. Then, decree that

whenever a pair of indices are repeated – for e.g., AiBi – they are implicitly
summed over; namely, AiBi ≡

∑
i A

iBi .

For instance, the dot product between a⃗ and b⃗ is now expressible as

a⃗ · b⃗ =
∑
i

aibj = δija
ibj. (1.0.11)

We may thus rephrase the Pythagorean theorem as

dℓ2 = δijdx
idxj. (1.0.12)

If we choose instead some other (possibly curvilinear) coordinates {yi}, we may simply compute
the Jacobian ∂xi/∂ya in order to obtain dℓ in this new system:

dℓ2 = δij
∂xi

∂ya
∂xj

∂yb
dyadyb =

(
∂x⃗

∂ya
· ∂x⃗

∂yb

)
dyadyb ≡ ga′b′(y⃗)dy

adyb. (1.0.13)

Much of vector calculus operations follows from this object ga′b′ , usually dubbed the ‘metric
tensor’.
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Problem 1.2. Extremal length implies straight lines Let z⃗(λ0 ≤ λ ≤ λ1) be a path
in space that joins x⃗′ to x⃗:

z⃗(λ = λ0) = x⃗′, z⃗(λ = λ1) = x⃗. (1.0.14)

Total length of this path can be defined as

ℓ(x⃗′ ↔ x⃗) =

∫ x⃗

x⃗′

√
dz⃗ · dz⃗ =

∫ λ1

λ0

dλ
√

(dz⃗/dλ)2, (1.0.15)

where (dz⃗/dλ)2 ≡ (dz⃗/dλ) · (dz⃗/dλ). If ℓ is extremized, show that z⃗ are straight lines joining x⃗′

to x⃗; namely,

z⃗ = x⃗′ + f(λ)(x⃗− x⃗′); (1.0.16)

where f is an arbitrary but monotonically increasing function of λ subject to the boundary
conditions f(λ = λ0) = 0 and f(λ = λ1) = 1.

Covariance Now, even though we defined Newton’s second law eq. (1.0.1) using Carte-
sian coordinates, we may ask how to rephrase it in arbitrary ones. Afterall, a car or building
should function in exactly the same way no matter what coordinate system the engineer used
to design them. Geometrically, the length of a curve or the area of some 2D surface ought not
depend on the coordinates used to parametrize them. Coordinates are important but merely
technical intermediate tools to describe Nature herself. This demand that an equation of physics
be expressible in arbitrary coordinate system – that the rules of calculation remains the same –
is known as covariance.

We may begin with a function of space f(x⃗), which returns a unique number f given a
unique location x⃗ in space – temperature of a medium at some point x⃗ is an example. Imagine
the trajectory of a point mass x⃗(t) passing through this medium, so that f(x⃗(t)) is the value f
measured by it as a function of time. The time derivative is, by the chain rule,

df

dt
=

dxi

dt

∂f

∂xi
. (1.0.17)

If we change the coordinate systems,

x⃗ = x⃗(y⃗), (1.0.18)

x⃗(t) ≡ x⃗(y⃗(t)); (1.0.19)

then we had better get back the same f as long as x⃗ = x⃗(y⃗) remains the same point:

f ′(y⃗) ≡ f(x⃗(y⃗)), (1.0.20)

where the prime does not denote a derivative, but rather f ′(y⃗) is the function f but now written
in the u⃗ coordinate system. This, in fact, is the definition of a scalar function. Moreover, we
may consider the time derivative

df ′(y⃗(t))

dt
=

dya

dt

∂f(x⃗(y⃗(t)))

∂ya
=

dya

dt

∂xi

∂ya
∂f(x⃗(t))

∂xi
=

dxi

dt

∂f(x⃗(t))

∂xi
. (1.0.21)

4



Since f itself was arbitrary, we may therefore identify the tangent vector along the trajectory to
be

d

dt
=

dya

dt

∂

∂ya
=

dya

dt

∂xi

∂ya
∂

∂xi
=

dxi

dt

∂

∂xi
. (1.0.22)

Notice, from the second and last equality, that this notion of a tangent vector – i.e., the velocity
tangent to some prescribed path – takes the same form no matter the coordinate system used.
The two expressions in the x⃗− and y⃗−system are in fact related by a contraction with the
relevant Jacobian. Moreover, notice d/dt for an arbitrary trajectory is really a superposition of
the partial derivatives with respect to the coordinates employed; hence the collection of all such
d/dt is the vector space at a given point in space spanned by these {∂i}.

Let’s turn to the second derivative version of d/dt, which we shall denote as D2/dt2. We
demand, like d/dt, that it takes the same form no matter the coordinate system used. The
answer is

D2

dt2
=

(
d2yi

dt2
+ Γi

ab(y⃗)
dya

dt

dyb

dt

)
∂

∂yi
, (1.0.23)

where the Γi
ab are known as Christoffel symbols. For any spatial metric dℓ2 = gabdy

adyb, it can
be computed as

Γi
ab(y⃗) =

1

2
(g−1)ic(y⃗)

(
∂yagbc + ∂ybgac − ∂ycgab

)
. (1.0.24)

By viewing gab as a matrix (with a and b being the row and column number) we have defined
(g−1)ab as the (a, b)-component of its inverse. For the flat metric at hand, if x⃗ are Cartesian
coordinates and y⃗ are some other (possibly curvilinear) ones, so that gab = ∂ya x⃗ · ∂yb x⃗,

Γi
ab(y⃗) =

1

2
(g−1)ic(y⃗)

(
∂ya(∂yb x⃗ · ∂yc x⃗) + ∂yb(∂ya x⃗ · ∂yc x⃗)− ∂yc(∂ya x⃗ · ∂yb x⃗)

)
(1.0.25)

=
1

2
(g−1)ic(y⃗)

(
2∂yayb x⃗ · ∂yc x⃗+ ∂ya x⃗ · ∂ybyc x⃗+ ∂yb x⃗ · ∂yayc x⃗− ∂ycya x⃗ · ∂yb x⃗− ∂ya x⃗ · ∂ycyb x⃗

)
= (g−1)ic(y⃗)

∂x⃗

∂ya∂yb
· ∂x⃗

∂yc
. (1.0.26)

The inverse of the metric is

(g−1)ab(y⃗) = δij
∂ya

∂xi

∂yb

∂xj
(1.0.27)

because

(g−1g)ab = (g−1)acgcb =
∂ya

∂xi

∂yc

∂xi

∂xl

∂yc
∂xl

∂yb
(1.0.28)

=
∂ya

∂xi

∂xl

∂xi

∂xl

∂yb
=

∂ya

∂xi
δli
∂xl

∂yb
(1.0.29)

=
∂ya

∂xl

∂xl

∂yb
=

∂ya

∂yb
= δab . (1.0.30)
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In other words,

D2

dt2
=

(
d2yi

dt2
+ (g−1)ic(y⃗)

∂x⃗

∂ya∂yb
· ∂x⃗

∂yc
dya

dt

dyb

dt

)
∂

∂yi
(1.0.31)

=

(
d2yi

dt2
+

∂yi

∂xl

∂yc

∂xl

∂xk

∂ya∂yb
∂xk

∂yc
dya

dt

dyb

dt

)
∂

∂yi
(1.0.32)

=

(
d2yi

dt2
+

∂yi

∂xl

∂xl

∂ya∂yb
dya

dt

dyb

dt

)
∂

∂yi
. (1.0.33)

Problem 1.3. Coordinate Transformation Consider changing coordinates y⃗ = y⃗(z⃗), so
that, for instance,

∂

∂ya
=

∂zk

∂ya
∂

∂zk
and

dyi

dt
=

∂yi

∂za
dza

dt
(1.0.34)

– show that D2/dt2 does indeed take the same form:

D2

dt2
=

(
d2zi

dt2
+

∂zi

∂xl

∂xl

∂za∂zb
dza

dt

dzb

dt

)
∂

∂zi
. (1.0.35)

Observe that, we recover the ordinary acceleration d2xi/dt2 when z⃗ = x⃗; in fact, one approach
to this problem is to show that

ẍi∂xi =
D2zi

dt2
∂zi (1.0.36)

for arbitrary but invertible x⃗(z⃗). Moreover, since this definition takes the same form under
arbitrary coordinate systems, we may take it to denote the fully covariant form of acceleration
ai ≡ z̈i + (∂zi/∂xl)(∂2xl/∂za∂zb)żażb.

Problem 1.4. Classical Mechanics on 2-Sphere We may exploit the first line in eq.
(1.0.31) to describe acceleration D2zi/dt2 on the 2−sphere. Simply view x⃗ as the unit-length
Cartesian displacement vector parametrized in spherical coordinates:

x⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) . (1.0.37)

Next, define

yi ≡ (θ, ϕ). (1.0.38)

Show that

gab(y⃗) =
∂x⃗

∂ya
· ∂x⃗

∂yb
=

[
1 0
0 sin2 θ

]
and (g−1)ab(y⃗) =

[
1 0
0 1/ sin2 θ

]
. (1.0.39)

By computing ∂y/∂x and ∂2x/∂x∂x, show that the trajectories in eq. (1.0.5) are indeed
acceleration-free: D2θ/dt2 = 0 = D2ϕ/dt2.
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Euclidean symmetry We record here without proof that the most general coordinate
transformation x⃗ = x⃗(x⃗′) that preserves the form of the metric in equations (1.0.7) and (1.0.12)
– namely,

dx⃗ · dx⃗ =

(
∂x⃗

∂x′a · ∂x⃗

∂x′b

)
dx′adx′b = dx⃗′ · dx⃗′ (1.0.40)

is given by

x⃗ = R̂ · x⃗′ + a⃗, (1.0.41)

where R̂ is an orthogonal matrix obeying R̂TR̂ = I and a⃗ is a constant vector. YZ: Switch to
Analytical Methods.

Galiean Transformation and Newtonian Gravity An important example is that
of Newtonian gravity of N point masses. In an inertial frame, Newton’s second law for the A-th
mass reads

mA
¨⃗xA = −

∑
B ̸=A

GNmAmB(x⃗A − x⃗B)

|x⃗A − x⃗B|3
. (1.0.42)

That we are in flat space is what allows us to write the displacement vector between mA and mB

as x⃗A − x⃗B and the associated distance as |x⃗A − x⃗B|. Additionally, let us perform the Galilean
transformation

x⃗ = R̂ · x⃗′ + a⃗+ V⃗ · t′ and t = t′, (1.0.43)

where R̂, V⃗ , and a⃗ are constant; moreover R̂TR̂ = I. This relates two inertial frames by a
constant velocity displacement as well as spatial rotation and/or parity flips. Note that eq.

(1.0.41) is a subset of eq. (1.0.43); i.e., where V⃗ = 0⃗.
For Newtonian gravity, eq. (1.0.43) leads to

x⃗A − x⃗B = R̂ · (x⃗′
A − x⃗′

B), (1.0.44)

|x⃗A − x⃗B| = |x⃗′
A − x⃗′

B|, (1.0.45)

whereas

¨⃗x = R̂ · ¨⃗x′. (1.0.46)

Altogether, Newtonian gravity now reads

mAR̂ · ¨⃗x′
A = −

∑
B ̸=A

GNmAmBR̂ · (x⃗′
A − x⃗′

B)

|x⃗′
A − x⃗′

B|3
. (1.0.47)

In index notation,

mAR̂
i
j · ẍ

′j
A = −R̂i

j

∑
B ̸=A

GNmAmB(x
′j
A − x′j

B)

|x⃗′
A − x⃗′

B|3
. (1.0.48)
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Multiplying both sides by R̂T, we see that Newtonian gravity is in fact invariant under the
transformations in eq. (1.0.43):

mA
¨⃗x′
A = −

∑
B ̸=A

GNmAmB · (x⃗′
A − x⃗′

B)

|x⃗′
A − x⃗′

B|3
. (1.0.49)

To ensure that Newtonian gravity may be expressed in arbitrary coordinate systems, we contract
both sides with the partial derivatives:

mAẍ
i
A∂xi = −

∑
B ̸=A

GNmAmB · (xi
A − xi

B)

|x⃗A − x⃗B|3
∂xi . (1.0.50)

Previously, we have already seen that if x⃗(z⃗) is given the coordinate invariant version of the LHS
is ẍi∂xi = (D2zi/dt2)∂zi . On the other hand, ∂xi = (∂za/∂xi)∂za . We therefore arrive at

mA
D2zaA
dt2

∂za = −
∑
B ̸=A

GNmAmB · (xi
A − xi

B)

|x⃗A − x⃗B|3
∂za

∂xi
∂za . (1.0.51)

Problem 1.5. 2-Body Newtonian Gravity: Spherical Coordinates Suppose a small
mass m is orbiting a much heavier one M , i.e., m ≪ M , so that Newton’s law of gravity reduces
for the small mass’ trajectory x⃗ to

ẍi = −GNM

|x⃗|2
x⃗

|x⃗|
, (1.0.52)

where x⃗ are Cartesian coordinates. Use eq. (1.0.35) to show that, in spherical coordinates,

r̈ − r · θ̇2 − r · sin2 θϕ̇2 = −GNM

r2
, (1.0.53)

θ̈ +
2

r
ṙθ̇ − sin θ cos θϕ̇2 = 0, (1.0.54)

ϕ̈+
2

r
ṙϕ̇+ 2 cot θθ̇ϕ̇ = 0. (1.0.55)

For practical purposes, it is useful to choose the coordinate system such that the orbit takes
place on the θ = π/2 plane.

Classical Mechanics & Galilean Symmetry For slowing moving classical systems
(v/c ≪ 1), the Galilean transformation in eq. (1.0.43) are expected to preserve the form of all
fundamental physical laws.

Mathematically, we may package it as the following matrix relation: t
x⃗
1

 =

 1 0⃗T 0

V⃗ R̂ a⃗

0 0⃗T 1

 t′

x⃗′

1

 . (1.0.56)

(The final row does not contain physical information; it is inserted just to make the matrix
multiplication work out properly.) We see that a Galilean transformation can be encoded with
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a (D + 2)× (D + 2) matrix, containing the constant velocity V⃗ , the rotation and/or parity flip

R̂, and the constant spatial displacement a⃗. Denoting

Π
(
V⃗ , R̂, a⃗

)
≡

 1 0⃗T 0

V⃗ R̂ a⃗

0 0⃗T 1

 , (1.0.57)

we multiply two such matrices to uncover

Π
(
V⃗1, R̂1, a⃗1

)
· Π

(
V⃗2, R̂2, a⃗2

)
=

 1 0⃗T 0

V⃗1 R̂1 a⃗1
0 0⃗T 1

 1 0⃗T 0

V⃗2 R̂2 a⃗2
0 0⃗T 1

 (1.0.58)

=

 1 0⃗T 0

V⃗1 + R̂1V⃗2 R̂1R̂2 R̂1a⃗2 + a⃗1
0 0⃗T 1

 (1.0.59)

= Π
(
V⃗1 + R̂1V⃗2, R̂1R̂2, R̂1a⃗2 + a⃗1

)
. (1.0.60)

The identity transformation is

I(D+2)×(D+2) = Π
(
0⃗, ID×D, 0⃗

)
. (1.0.61)

and therefore

Π
(
V⃗ , R̂, a⃗

)−1

= Π
(
−R̂TV⃗ , R̂T,−R̂Ta⃗

)
. (1.0.62)

These relations verify that {Π(V⃗ , R̂, a⃗)} forms a group.

Problem 1.6. Derivatives Explain why[
∂t
∂t′

∂t
∂x′i

∂xa

∂t′
∂xa

∂x′b

]−1

=

[
∂t′

∂t
∂t′

∂xi

∂x′a

∂t
∂x′a

∂xb

]
. (1.0.63)

Use this result or otherwise to deduce from eq. (1.0.43) the relations

∂t = ∂t′ − V aR̂ab∂x′b (1.0.64)

and

∂xi = R̂ij∂x′j . (1.0.65)

These results are important in determining if certain partial differential equations of physics are
in fact invariant under the Galilean transformations of eq. (1.0.43).

Problem 1.7. Covariant Acceleration If the Cartesian x⃗ are given a transformation into
z⃗−coordinates, i.e., x⃗(z⃗) is given, show that eq. (1.0.43) then implies

∂xa

∂zi
= R̂ab∂x

′b

∂zi
(1.0.66)
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and

∂zi

∂xa
=

∂zi

∂x′b R̂
ab. (1.0.67)

Next, prove that the acceleration in eq. (1.0.35) is in fact invariant under Galilean transforma-
tions.

Surface Waves: Toy Model Let x3 be the height of the 2D surface of some substance
made out of many point particles – say, a rubber sheet. Let there be a wave propagating along
the positive 1−direction, so that

x3 = A sin(x1 − vt), (1.0.68)

where A is the amplitude of the wave and v is its (constant) speed. These x⃗ = (x1, x2, x3) are
defined with respect to the rest frame of this substance. Now, if Galilean symmetry holds (cf.

(1.0.43)), then in the inertial x⃗′−frame moving at velocity V⃗ parallel to the rubber sheet, namely

(x1, x2, x3) = (x′1 + a1 + V 1 · t, x′2 + a2 + V 2 · t, x′3), (1.0.69)

we have

x′3 = A sin(x′1 + a1 + (V 1 − v)t). (1.0.70)

In other words, the velocity of the wave in this new x⃗′−frame is now V 1 − v. We shall see the
electromagnetic waves do not transform in such a manner.
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